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Strength Distribution of Repeatedly Broken Chains
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We determine the probability distribution of the breaking strength for chains of N links,
which have been produced by repeatedly breaking a very long chain.
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1. INTRODUCTION

Consider a chain assembled from N random links with independent, identically
distributed breaking strengths x , which have probability density ρ(x). It is easy
to calculate the probability density ρ(x |N ) for the strength of the chain being less
than x . In some contexts, however, the relevant question is a different one: what
are the strengths of chain segments of length N which are obtained by repeatedly
breaking a very long chain? Such chain segments are expected to be stronger than
their randomly assembled counterparts, because they have been produced by a
process which has eliminated the weakest links. Here we calculate the distribution
of the strength of a chain segment of length N which has been produced by
repeated breaking a very long chain, of length N , say. Specifically, we break the
chain of length N at its weakest link, then break each fragment at its weakest
link and continue the process. We collect the links of length N produced by this
process, and determine the probability density of their strengths, ρ∗(x |N ). In this
paper we obtain formulae which are precise asymptotic results for the limit where
N � 1.
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Calculating this distribution involves the use of prior information: we know
that the chain segment of length N and breaking strength x was produced by
breaking a longer and weaker chain, of length N0 and breaking strength x0. What
makes the problem difficult is that the prior information, in the form of the values
of N0 and x0, is itself uncertain. It is hard to solve this problem for the case of a
chain which has previously been broken only once. In the case of a chain which
has been broken many times, the distributions of x0 and N0 themselves depend on
previous breakages: the problem appears to be very difficult when the chain has
previously been broken many times.

Since we consider the case where the chain is very long, we anticipate that
there is an asymptotic form for the strength distribution which is independent of
the initial length N . We use a self-consistent calculation and obtain ρ∗(x |N ) in
closed form in terms of the cumulative strength distribution of an individual link,
P(X ), and the corresponding probability density ρ(x) = dP(x)/dx :

ρ∗(x |N ) ∼ 1

2
N 3ρ(x)[P(x)]2 exp[−NP (x)]. (1)

(We use A(N ) ∼ B(N ) to mean that A(N ) and B(N ) are asymptotically equal in
the limit as N → ∞.) For comparison, the corresponding probability density for
the strength of a randomly assembled chain is

ρ(x |N ) ∼ Nρ(x) exp[−NP (x)]. (2)

Figure 1 shows the comparison between Eq. (1) and a histogram of data from a
numerical simulation of the chain-breaking process, for a particular choice of link
strength distribution ρ(x).

One of our motivations for studying the chain-breaking process was our
observation (in numerical experiments) that this process has connections with
Mott’s variable-range hopping problem. (1) Specifically, the distribution of lengths
of current-carrying bonds in the one-dimensional case of Mott’s variable-range-
hopping model is closely related to the distribution of lengths of unbreakable
segments in breaking a random chain. (2) The model we solve below is a version
of the chain-breaking model for variable-range hopping which is simple enough
to be exactly solvable.

The process we describe here is also of interest because it models frag-
mentation processes in which the distribution of strengths of fragments (rather
than the distribution of fragment sizes) is the principal concern. A number of
authors have previously discussed the distribution of fragment sizes.(3−5) Other
works have discussed fragment-size distributions in more general random frag-
mentation processes, for example so-called ‘stick-breaking processes’, (6) and
are of interest in describing genetic variation in biological populations, see for
example.(6−8)
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Fig. 1. Shows ρ∗(x |N ) for three different values of N , namely 10, 20 and 40, for ρ(x) = x exp(−x):
computer simulations (histogram) are compared with Eq. (1), which takes the form ρ∗(x |N ) =
(N 3/2) x e−x [1 − (1 + x)e−x ]2e−N (1−(1+x)e−x ).

We are not aware of any earlier investigations of the strength distribution of
fragments. The chain-breaking process is of interest because it is a fundamental
model for such processes, which has an explicit solution for the distribution
ρ∗(x |N ).

In Sec. 2 we consider the distribution of the sizes of fragments of a repeatedly
broken chain, and Sec. 3 describes elementary results for randomly assembled
chains. In Sec. 4 these expressions are used to obtain a recursion for a sequence of
distributions which are related to ρ∗(x |N ). Finally Sec. 5 shows how the limiting
distribution of this sequence is obtained self-consistently, and used to derive Eq. (1)
above.

2. DISTRIBUTION OF FRAGMENT SIZES

First we discuss the distribution of sizes of chain fragments. After i steps of
splitting the chain, we have 2i fragments. Let Wi (N ) be the number of segments
of lengths N at step i , and let us consider the case where these numbers are so
large that it is sufficient to calculate expectation values and ignore the statistical
fluctuations of Wi (N ) (this assumption is valid in the limit as N → ∞). Using
the fact that the position of the weakest link has equal probability to be at any site,
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these numbers satisfy a recursion relation:

Wi+1(N ) =
∞∑

M=N+1

2

M − 1
Wi (M). (3)

Rather than following this iteration for a single chain being broken, it is easier
to consider a steady state W (N ), with destruction of one additional chain being
initiated at each step. Thus we seek to solve

W (N ) =
∞∑

M=N+1

2

M − 1
W (M). (4)

We find W (N ) ∼ C/N 2 for N → ∞, for some constant C .

3. STRENGTH OF A RANDOM CHAIN SEGMENT

By way of preparation we discuss elementary results on the distribution of
strengths for a chain with completely random links. Let P(x |N ) be the probability
that a chain of length N breaks at a tension which is less than x . For N = 1, we
have P(x |1) = P(x). The probability that a chain of N links is unbreakable at
tension x is 1 − P(x |N ) = [1 − P(x)]N . In the limit where N � 1, the power
may be approximated by exponentiation: we find P(x |N ) ∼ 1 − exp[−N P(x)]
(which gives (2) upon differentiation).

We also require the conditional probability Pc(x |x0, N ) that a chain of length
N breaks at tension x if we know that it is definitely not broken by a tension x0.
In this case we know that the probability of the strength of an individual element
being less than x is [P(x) − P(x0)]/[1 − P(x0)], so that

Pc(x |x0, N ) = 1 −
[

P(x) − P(x0)

1 − P(x0)

]N

(5)

provided that x > x0 (and zero otherwise). When N � 1, this may be approxi-
mated by

Pc(x |x0, N ) ∼ [
1 − exp

(−N [P(x) − P(x0)]
)]

�(x − x0) (6)

where �(x) is the unit increasing step function (Heaviside function).

4. A RECURSION RELATION FOR PROBABILITIES OF SUCCESSIVE

BREAKING TENSIONS

Our objective is to obtain the probability density ρ∗(x |N ) that a chain of
length N , which has been produced by repeatedly breaking a very long chain, has
breaking strength x .
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We determine this distribution of strengths by calculating a related distribu-
tion. Consider the subdivision of the chain, starting from a very long chain of
length N . When this is repeatedly split, for convenience we always discuss the
leftmost segment. At the i th stage of subdivision, this segment having length Ni

is produced by breaking a link of strength xi . Let the probability density for the
strength of the link that was broken be ρi (xi |Ni ). The corresponding probability
for the i th split to occur at a tension less than xi to produce a segment of length Ni

is Pi (xi |Ni ). We shall obtain a recursion formula which expresses ρi+1(xi+1|Ni+1)
in terms of this distribution. The chain fragment at stage i + 1 is produced by
breaking a segment of length Ni , in which all of the links are known to be stronger
than xi . Both of these items of prior information (xi and Ni ) have uncertain
values.

Consider first the distribution of values of Ni , for a given value of Ni+1.
We have already seen (Eq. (4)) that repeated random sub-division of an interval
produces a steady-state distribution of lengths W (N ) ∼ 1/N 2. Subdivision of an
interval of length Ni > Ni+1 produces an interval of length Ni+1 with probability
1/Ni . The probability distribution for Ni is therefore proportional to N−3

i for
Ni > Ni+1 (and zero otherwise). For Ni+1 � 1, the normalised distribution of Ni

is therefore

Pn(Ni |Ni+1) ∼
⎧
⎨

⎩

2N 2
i+1

N 3
i

Ni+1 < Ni

0 Ni+1 ≥ Ni

. (7)

The probability Pi+1(xi+1|Ni+1) is obtained from Pc(xi+1|xi , Ni ) by averaging
over the probability densities of both Ni and xi . (Note that the latter probability
density is related to the unknown function that we wish to calculate.):

Pi+1(xi+1|Ni+1) =
∞∑

Ni =Ni+1+1

Pn(Ni |Ni+1)
∫ xi+1

0
dxi Pc(xi+1|xi , Ni )ρi (xi |Ni ). (8)

Differentiating (8) with respect to xi+1 and substituting the known expressions for
Pn(Ni |Ni+1) and Pc(x1|x0, N0) we obtain

ρi+1(xi+1|Ni+1) ∼ ρ(xi+1)
∞∑

Ni =Ni+1+1

2N 2
i+1

N 2
i

×
∫ xi+1

0
dxi exp(−Ni [P(xi+1) − P(xi )])ρi (xi |Ni ). (9)



1284 Wilkinson and Mehlig

5. SELF-CONSISTENT SOLUTION

We assume that the distribution ρi (x |N ) becomes independent of the genera-
tion index i when we consider the subdivision of a very long chain. This leads to a
‘self-consistency’ condition for the probability density ρi (x |N ) = dPi (x |N )/dx .
Approximating the sum in Eq. (9) by an integral, and replacing ρi and ρi+1 by the
asymptotic, self-consistent function ρ∞ yields

ρ∞(x |N ) ∼ 2N 2ρ(x)
∫ ∞

N
dN0

1

N 2
0

∫ x

0
dx0

× exp(−N0[P(x) − P(x0)])ρ∞(x0|N0). (10)

We assume that the corresponding probability P∞(x |N ) is of the form
P∞(x |N ) = F(N P(x)) for some function F (which increases monotonically
from F(0) = 0 to F(∞) = 1). Writing w = P(x), the derivative f = F ′ of F
satisfies

f (Nw) = 2N

∫ ∞

N
dN0

1

N0

∫ w

0
dw0 exp[−N0(w − w0)] f (N0w0). (11)

We express this integral equation in terms of g(X ) = exp(X ) f (X ), and differen-
tiate. We find that the primitive of g(X ), namely G(X ), satisfies

G ′′(X ) = X + 1

X
G ′(X ) − 2

X
G(X ). (12)

The solution of this equation is of the form

G(X ) = AX2 + B[exp(−X )(1 + X ) − X2Ei(X )] (13)

where A, B are constants and Ei(X ) = P
∫ X
−∞dz ez/z is the exponential integral.

The requirement that G(0) = 0 implies that B = 0, so that the normalised function
f (x) is f (x) = x exp(−x). Thus we find the probability density for a chain segment
of length N being formed by breaking a link of strength x in the form

ρ∞(x |N ) = N 2ρ(x)P(x) exp[−N P(x)]. (14)

Finally, we are in the position to obtain the desired result, the probability
density for a segment of length N having a weakest link of strength x . This is
obtained from the distribution ρ∞(x |N ) as follows

ρ∗(x |N ) =
∫ x

0
dx0

d

dx
Pc(x |x0, N )ρ∞(x0|N )

= Nρ(x)
∫ x

0
dx0 exp

( − N [P(x) − P(x0)]
)
ρ∞(x0|N ). (15)

In the limit of large N we find the simple, asymptotically exact result (1).
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6. DISCUSSION

We conclude by briefly discussing the behaviour of our solution, equation (1),
in different circumstances. In the case where ρ(x) has a finite limit for very weak
chains, ρ0 = ρ(0), the strength distribution (1) has a simple form when N → ∞:

ρ∗(x |N ) ∼ 1

2
N 3ρ3

0 x2 exp(−Nρ0x). (16)

This a universal function of the scaling variable xρ0 N (note that the example
shown in Fig. 1 is not of this scaling form).

Another case of interest is when the distribution of chain strengths is sharply
peaked. We write

P(x) = exp[−F(x)] (17)

where F(x) increases very rapidly as x approaches zero from above. We approx-
imate each of Eqs. (2) and (1) by expanding about the point where (respectively)
ρ(x |N ) or ρ∗(x |N ) is maximal. Let xmax be the position of the maximum of the
strength distribution for the un-conditioned chain of length N , and x∗

max the po-
sition of the maximum for the chain produced by repeated breaking of longer
fragments. We find:

F(xmax) = ln (N ) , F(x∗
max) = ln (N/3) (18)

provided that N is not so large that these equations have no solution for positive
values of xmax, x∗

max. These relations imply that in the large-N limit, conditioning
the chains increases their expected strength.
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